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Exotic Smoothness, Noncommutative Geometry, 
and Particle Physics 
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Received May 9, 1996 

We investigate how exotic differential structures may reveal themselves in particle 
physics. The analysis is based on A. Connes' construction of the standard model. 
It is shown that, if one of the copies of the spacetime manifold is equipped with 
an exotic differential structure, a compact object of geometric origin may exist 
even if the spacetime is topologically trivial. Possible implications are discussed. 
An SU(3) ® SU(2) ® U(l) gauge model is constructed. This model may not be 
realistic, but it shows what kind of physical phenomena might be expected due 
to the existence of exotic differential structures on the spacetime manifold. 

There is no interesting topology on  R 4, the Euclidean four-dimensional 
space (or, to be more precise, it is topologically equivalent to a single point 
space). The counterintuitive results (Freedman, 1982; Donaldson, 1983; 
Gompf, 1983, 1993; DeMichelis and Freedman, 1992) that R 4 may be given 
infinitely many exotic differential structures raised the question of their physi- 
cal consequences (Brans and Randall, 1993; Brans, 1994; Sladkowski, 1996). 
An exotic differential structure C'k(M) on a manifold M is, by definition, a 
differential structure that is not diffeomorphic to the one considered as a 
standard one, Ck(M). This means that the sets of differentiable functions are 
different. For example, there are functions on R 4 that are not differentiable 
on some exotic R~ which is homeomorphic but not diffeomorphic to R 4. 
Here we would like to investigate the role that exotic differential structures 
on the spacetime manifold may play in particle physics. Our starting point 
will be A. Connes' noncommutative geometry-based construction of the 
standard model (Connes, 1994; Vfirilly and Garcia-Bondfa, 1993; 
Chamseddine et al., 1993; Stadkowski, 1994a,b). Connes managed to 
reformulate the standard notions of differential geometry in a pure algebraic 
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way that allows one to get rid of the differentiability and continuity require- 
ments. The notion of spacetime manifold S can be equivalently described by 
the (commutative) algebra C=(S) of smooth functions on S and can be general- 
ized to (a priori) an arbitrary noncommutative involutive algebra. Fiber 
bundles became projective modules in this language. A properly generalized 
connection can describe gauge fields on these objects. This allows one to 
incorporate the Higgs field into the gauge field so that the correct (that is, 
leading to spontaneously broken gauge symmetry) form of the scalar potential 
is obtained. The reader is referred to Connes (1994), Vfirilly and Garcia- 
Bondfa (1993), Chamseddine et al. (1993), and Stadkowski (1994a,b) for 
details. 

We shall consider the algebra A: 

A = M~(C~(S)) • M2(C~(S)) f~ M1(C~(S)) • M3(C°~(S)) (1) 

where Mi(ring) denotes i x i matrices over the ring C=(S) or C=(S). The 
caret denotes that the functions are smooth with respect to some nonstandard 
differential structure on S. The free Dirac operator has the form 

{ d r Q Id 3'5 ® ml2 3'5 ~ m13 3'5 ~ m14\ 
3'5 ® mzl d r ® Id 3'5 ~) m23 3'5 @ m24| 

O = /3'5 ® m31 3'5 ~ m32 ~ ~) Id 3'5 ~ m34 / (2) 
\3'5 ~)m41 3'5 ~m42 3'5 ~ m43 t~(~ Id / 

Here, as before, the caret denotes the "exoticness" of the appropriate differen- 
tial structure. The parameters m o describe the fermionic mass sector. Let p 
be a (self-adjoint) one-form in f~l(A) C O*(A); here £~*(A) denotes the 
universal differential algebra of A (Connes, 1994; V~irilly and Garcia- 
Bondfa, 1993): 

p = ~ a,dbi, ai, bi ~ A; ~ aibi = 1 ( 3 )  
i i 

We will use the following notation for an a ~ A: 

a = diag(a I, a 2, a 3, a 4) (4) 

with a i belonging to the appropriate matrix algebra in (1). The physical 
bosonic fields are defined via the representation "rr in terms of (bounded) 
operators in the appropriate Hilbert space (Connes, 1994; V&illy and Garcia- 
Bondfa, 1993; Chamseddine et al., 1993; Sladkowski, 1994a,b): 

"rr(aodal " "  a.) = ao[D, ad "'" [D, a.] (5) 
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Standard algebraic calculations lead to 

r r ( p )  = 

A1 ~/5®~ bl2 ~/5®~ hI3 "Ys®~b14\ 
~5 ® q b2L A2 ~/5 ® +23 ® ~bz4~ 

v5 ® +3,1 ~5 @ (D 31 '~5 @ ~/)32 A 3 "/5 

~/5 @ t~ 41 "~5 @ ~ b42 "~5 @ t~ )43 A4 / 

where 

(6) 

and 

+Pq = ~ a~(mpqb q - b~mpq), p 4 = q (8) 
i 

Note that the A 3 and A 4 are given in terms of the exotic differential structure. 
They will be the source of the SU(3) part of the gauge group. The additional 
U(1) term A 3 is the price we have to pay for the "exactness" of the SU(3) gauge 
symmetry: noncommutative geometry prefers broken gauge symmetries. It 
is still an open question whether noncommutative geometry provides us with 
new (quantum?) symmetries; see Connes (1994), V~511y and Garcia-Bondfa 
(1993), and Chamseddine et al. (1993) for details. There is one subtle step 
in the reduction of the gauge symmetry from SU(2) ® U(1) ® U(1) ® SU(3) 
to SU(2) ® U(1) ® SU(3). Namely, one should require that the U(1) part of 
the associated connection is equal to Y and the U(1) part of the SU(3) 
connection and the "exotic" U(1) factor is equal to - Y  [a more elegant but 
equivalent treatment can be found in V~l ly  and Garcia-Bondfa (1993)]. But 
these are defined with respect to different differential structures! This can be 
done only locally, as the exotic differential structure defines a different set 
of smooth functions than the standard one (and vice versa). We will return 
to this problem later. This defines the algebraic structure of the standard 
model. To obtain the Lagrangian, we have to calculate the curvature O, 
O = 'rr(dp) = ~,i [D, ai][D, bi]. This can be easily done. The bosonic part 
of the action is given by the formula 

IyM = Tro,( O21DI -4) (9) 

where Tro, is the Diximier trace defined by (Connes, 1994; V4rilly and Garcia- 
Bondfa, 1993) 

1 i = N  

Tro,(O) = lim ~]  Ixi(O) (10) 

A p = ~a~Bb/p, p = 1,2 (7a) 
i 

a p = ~ a n ~b p, p = 3, 4 (7b) 
i 
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Here Ixi denotes the ith eigenvalue of the (compact) operator O. The Diximier 
trace gives the logarithmic divergences, and the result is zero for operators 
in the ordinary trace class. We will use the heat kernel method (Gilkey, 1974, 
1984a,b; Hurt, 1983; Ma_fka and Stadkowski, 1989). For a second-order 
positive pseudodifferential operator O: L2(E) --~ L2(E), where L2(E) denotes 
the space square-integrable functions on the vector bundle E, the operator 

e_,O = 1 ~ e - ' ~ ( ~ . I d  - O) -l d~ ( l l )  
2wi Jc 

is well defined for Re t > 0. Then the Mellin transformation (Gilkey, 1984a) 

0= e- '° t  ~-l dt = ['(s)O -s (12) 

provides us with the formula 

fo° ID1-4 _- dt te -tlDI2 (13) 

Now we have to restrict ourselves to the case 

m 3 1  = m 3 2  ----- m 4 1  ----- m 4 2  = m 1 3  ----- m 1 4  = m 2 3  = m 2 4  = 0 

in (2) so that the free Dirac operator takes the form 

D = (  D' D20) (14) 

where D2 is defined with respect to an exotic differential structure. This 
allows us to calculate the Diximier trace and the notion of a point retains its 
ordinary spacetime sense. This is not very restrictive, as the SU(3) gauge 
symmetry is unbroken. Calculation of the Diximier trace in the general case 
is more involved (if at all possible) and we would lose the convenient 
spacetime interpretation. The relation (Gilkey, 1974) 

e - t (ol~02) = e -t(ot) G e -t(o2) (15) 

leads to the following asymptotic formula: 

tr((fOJr)e-'m'2)=Idx4x/--g[(a-~2+a--~+"" 

+ --t + "'" (16) 
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where a; are the spectral coefficients (Gilkey, 1974, 1984a,b; Hurt, 1983; 
Mafika and Stadkowski, 1989), g is the metric tensor, dots denote the finite 
terms in the limit t ~ 0, and the caret distinguishes between the standard 
and exotic structures. For the Dirac Laplacians I D;I 2, i = 1, 2, we have a0 
= 1 and a~ is equal to the curvature R. This gives the following value of  
the Yang-Mills (bosonic) action (roughly speaking, this is the "logarithmic 
divergence" term): 

f 1 I ~/x 4 ~ TR(~2(0)) (17) I dx 4 ~ TR(,rr2(0) ) + /YM = 

where the trace TR is taken over the Clifford algebra and the matrix structure. 
As before, the caret is used to distinguish the "exotic" part of the curvature 
from the "nonexotic" one. Note that due to continuity, the two integrals do 
not feel the different differential structures, so, formally, the action looks the 
same as in the ordinary case. Now, standard algebraic calculations [after 
elimination of  spurious degrees of  freedom by hand (Connes, 1994; 
Chamseddine et al., 1993; Siadkowski, 1994b) or by going to the quotient 
space (VSxilly and Garcia-Bondfa, 1993)] lead to the following Lagrangian 
(in the Minkowski space): 

I-.VM = f I v/g ~4"t±~'g,-~-~-tF~ Fl~ ~ + F~,F2~ ~) 

+ ½Tr(mmt) lO~ + Aid~ - qbtA212 
- ½[Tr(rnmt) 2 - (Tr mmt)Z](+qb t - I) 2} 

^ [ C C}.I.v + v/~¥Ng(F~F )} d4V (18) 

The SU(3)c stress tensor F ~  is smooth with respect to the exotic differen- 
tial structure. We will not need the concrete values of the traces in (18), so 
we will not quote them [they are analogous to those in Kastler and Schticker 
(1992) and Garcia-Bondfa (n.d.)]. There are some subtleties in the formula 
(18). We would be tempted to rewrite it in the orthodox form: 

= I "/~ t l ~ t ~ ' l  ~ + - ~ -  + LvM t ~ ' ' g ~ ' - - I  . t v -  ~ '2  F2F~v --p.v--Fc FcP'v'~J 

+ ½Tr(mrnt)IOd~ + Alq~ - ~tA212 

- ½[Tr(mmt) 2 - (Tr mmt)2](qb~ t - 1):} d4x (19) 

Unfortunately, in the general case there is no relation between g and d. The 
d may not be differentiable with respect to the standard differential structure 
on the spacetime manifold, so we have to present additional arguments 
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justifying (19) (see below). Another problem is connected with the existence 
of two, in general different metrics g and ~. The metric on the whole spacetime 
(i.e., the two copies of S) is given by the formula (Connes, 1983) 

d(p, q) = sup{ If(p) - f(q)J;  f E A,ll [D, fill --- 1 } 

We have (Connes, 1994): 

Proposition I. 1. The restriction of the metric d on SI U $2 to each copy 
(Sl or Sa) is the Riemannian geodesic distance of St U $2. 

2. For each point Pi E Si, the distance d(pi, Sk,i) = inf{d(pi, q); q E 
Sk} is equal to k -l ,  k = I[MI[, and is attained at a unique point of S~. Here 
M denotes the mass part of the Dirac operator: 

{ ~ ® I d  ~/5 ® M*) 
O = ~"/5 ® M ~ ® I d  

Of course, Proposition 1 is true only if the Gromov distance between 
the two Riemannian metrics is smaller than h -l. This gives a lower bound 
on the value of ItMII which for a finite-dimensional matrix IIMII is equal to 
its largest eigenvalue. As M describes masses of the matter fields, this may 
suggest the existence of additional heavy families (Sladkowski, 1994a) or 
the see-saw mechanism for light neutrinos. Unfortunately, our knowledge of 
exotic manifolds is too poor to give physical predictions. 

Fermion fields are added in the usual way (Connes, 1994; VJrilly and 
Garcia-Bondfa, 1993; Chamseddine et al., 1993; Stadkowski, 1994b): 

Lf = (~blD + 'n'(p) l$) 

= [ (-~L ~ L  + -~R Dt~R + -~L~ ~ m~te + -~R~) t ~ mt~bL) d4x (20) 

where we have included the ~r(p) term in D (as in the ordinary covariant 
derivative). The quark fields are defined with respect to the exotic differential 
structure. Here again we might encounter the consistency problem. To pro- 
ceed, let us review some results concerning exotic differential structures on 
R 4 (Gompf, 1993; Brans, 1994). 

An exotic R~ consists of a set of points which can be globally continu- 
ously identified with the set of four coordinates (x l, x 2, x 3, x4). These coordi- 
nates may be smooth locally, but they cannot be globally continued as smooth 
functions and no diffeomorphic image of an exotic R~ can be given such 
global coordinates in a smooth way. There are uncountable many different 
R~). Brans (1994) proved the following theorem: 

Theorem 1. There exist smooth manifolds which are homeomorphic but 
not diffeomorphic to R 4 and for which the global coordinates (t, x, y, z) are 
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smooth for x 2 + y2 + z 2 _> a 2 > 0, but not globally. Smooth metrics exist 
for which the boundary of this region is timelike, so that the exoticness is 
spatially confined. 

He also conjectured that such localized exoticness can act as a source 
for some externally regular field, just as matter or a wormhole can. Of course, 
there are also R~ whose exoticness cannot be localized. They might have 
important cosmological consequences. We also have (Brans, 1994): 

Theorem 2. If M is a smooth, connected 4-manifold and S is a closed 
submanifold for which Ha(M, S, Z) = 0, then any smooth, time-orientable 
Lorentz metric defined over S can be smoothly continued to all of M. 

Now we are prepared to analyze the Lagrangian given by (18). Despite 
the fact that it looks like an ordinary one, we should remember that the 
strongly interacting fields are defined with respect to an exotic differential 
structure. This means that, in general, these fields may not be smooth with 
respect to the standard differential structure, although they are smooth solu- 
tions with respect to the exotic one. They certainly are continuous. In the 
noncommutative geometry approach to particle physics the spacetime mani- 
fold emerges due to interactions. This can be seen in the following way. The 
trace theorem relates the Diximier trace with the residue of a pseudodifferen- 
tial operator on a manifold (Connes, 1994; V~irilly and Garcia-Bondfa, 1993). 
As a result we get the formula (17). We see that the two "copies" of the 
spacetime are topologically equivalent (homeomorphic). So the notion of a 
spacetime point is well defined, but we might encounter difficulties while 
trying to define globally some smooth structures or physical fields. In general, 
only those "exotic" fields that vanish outside a compact set (not necessary 
containing the exotic region/regions) can be expected to be differentiable 
with respect to the standard differential structure and consistent with the 
derivation of the Lagrangian (18). This is because manifolds are locally 
Euclidean and constant functions are differentiable; they must vanish outside 
a compact set because the configuration has infinite energy otherwise. Theo- 
rem 2 suggests that it might be possible to continue a Lorentz structure to 
all of spacetime so that (18) make sense [e.g., for a noncompact manifold 
M, submanifolds S for which H3(S; Z) = 0 satisfy the required conditions 
(Brans, 1994)]. 

The fact that a smooth metric defined over a submanifold can be smoothly 
continued to all of the spacetime manifold does not mean that we get the 
same result for any differential structure. This means that, in general, the 
transition from (18) to (19) requires an additional consistency condition. 
Again the obvious and simplest solution demands that the exotic sector can 
be only locally different from zero (the considered fields are continuous, and 
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changing their values at some points does not help). In this way may "annihi- 
late" the possible differences between ~ and g. This means that we can consider 
(19) as sort of "smooth approximation" to the description of fundamental 
interactions with a not explicitly written additional condition. This is compati- 
ble with experiments if strongly interacting particles and fields are exotic in 
the above sense. This means that strongly interacting fields probably must 
vanish outside a compact set to be consistent with the standard (?) differential 
structure that governs the electroweak sector. One can say that the exotic 
geometry confines strongly interacting particles to live inside baglike struc- 
tures. Unfortunately, the estimation of the size of such an object is not possible 
without (presently unavailable) information on the global structure of exotic 
manifolds. A priori, they may be as small as baryons or as big as a quark 
star. What is important is the fact that such objects are not black-hole-like 
ones. It is possible to "get inside such an object and go back." There is no 
topological obstruction that can prevent us from entering the exotic region: 
everything is smooth, but some fields must have compact supports. One may 
investigate its structure as one does in the case of baryons via electroweak 
interactions. 

It is unlikely that the above phenomenon explains confinement (one has 
to explain why such objects are small and so abundant), but one may wonder 
if such objects have astrophysical significance (it may happen that we live 
in such a nonexotic part of spacetime). 

Of course, the above analysis is classical: we do not know how to 
quantize models that noncommutative geometry provides us with. Let us 
conclude by saying that exotic differential structures over spacetime may 
play an important role in particle physics. They may provide us with "confin- 
ing forces" of pure geometrical origin: one does not have to introduce addi- 
tional scalar fields to obtain baglike models. 

We have discussed only exotic versions of R 4, but there are also other 
exotic 4-manifolds. (It is likely that every 4-manifold has its exotic compan- 
ions.) The proposed model is probably far from being a realistic one, but it 
is the only one ever constructed. We have connected the geometrical exotic- 
ness with strong interactions. We can give only one reason for doing so. 
Connes' construction provides us with spontaneously broken gauge symme- 
tries. Exact gauge symmetries are "out of the way," so we have made the 
SU(3)co~or sector "spatially exotic." Obviously, the topic deserves further 
investigation. One of the most important questions is, How do exotic differen- 
tial structures influence quantum theory? This is under investigation. 
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